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1. Summary of Research in the Period July, 1984 - June 30, 1985. Broadly
speaking, the research supported by the Air Force Office of Scientific Research during this .
period has centered about general matrix methods, and applications of matrix theory in
solving large systems of linear equations.

Listed below are those research papers, appearing in print in this period (July, 1984 -

June, 1985) or pending publication, which were outgrowths of the research supported by
the Air Force Office of Scientific Research. (All carry, or will carry, an acknowledgement (,f
AFOSR support.)

1. S. Ruscheweyh and R.S. Varga, "On the minimum moduli of normalized polynomials",
Rational Approximation and Interpolation, Proceedings, Tampa, Florida 1983, (P.R.
Graves-Morris, E.B. Saff, and R.S. Varga, eds.), Lecture Notes in Mathematics 1105,
pp. 150-159, Springer-Verlag, Heidelberg, 1984. MR86e:3007.

2. A.J. Carpenter, A. Ruttan, and R.S. Varga, "Extended numerical computations on
the "1/9" conjecture in rational approximation theory", Rational Approximation and
Interpolation, Proceedings, Tampa, Florida 1983, (P.R. Graves-Morris, E. B. Saff, and
R.S. Varga, eds.), Lecture Notes in Mathematics 1105, pp. 383-411, Springer-Verlag,
Heidelberg, 1984.

3. A.S. Cavaretta, Jr., A. Sharma, and R.S. Varga, "A Theorem of J.L. Walsh", revisited,
Pacific J. Math. 118 (1985), 313-322. MR86m:30039.

4. R.S. Varga and Wu Wen-Da, "On the rate of overconvergence of the generalized En-
estr6m-Kakeya functional for polynomials", J. Comp. Math. 3 (1985), 275-288. MR87d:
65034.

5. M. Eiermann, W. Niethammer, and R.S. Varga, "A study of semiiterative methods for

nonsymmetric systems of linear equations, Numer. Math. 47 (1985), 505-533.

6. A.S. Cavaretta, Jr., A. Sharma, and R.S. Varga, "Converse results in the Walsh theory of
equiconvergence7, RAIRO Mod~l Math. Anal. Num~r. 19 (1985), 601-609. MR87g:30001.

The above research papers can be roughly grouped into the following areas:

A. Applications of function theory,

B. The use of summability methods and approximate conformal , /
1-v-mapping techniques in the study of iterative methods. -or

We now focus on area B, and the associated paper by M. Eiermann, W. Niethammer,
and R.S. Varga, listed as #5 above. -

The Use of Summability Methods and Approximate Conformal Mapping Tech- to
niques in the Study of Iterative Methods.

To iteratively solve the matrix equation (in fixed point form) r, ig
", ,t ,, i 't tc I o

(1) x = Tx + c, ,. ' 1,,'ity Cods
l, l i1and/or ..-
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(where 1 is not an eigenvalue of T), one takes as the basic iteration

(2) x,, = Tx,,, + c (xo = a,m > 0),

which is well-known to be convergent, for arbitrary a, iff the spectral radius, denoted by
p(T), satisfies p(T) < 1. Associated with (2) is a semiiterative method (SIM), defined by

(3) Ym = E 7r,, Xi
,. i=0

where the (complex) numbers ,,=0 define an infinite triangular matrix

(4) p = 'L ri, (
7r2, 0  7r2,1 ,r2

where we assume

(5) 7r,,1 (m > 0).
i=O

On setting

(6) Pi):= F irz (m >_ 0),
i=0

then p,(z) is a (complex) polynomial of degree at most m, with pm(l) I (m > 0).
If x denotes the unique solution of (1) (since I is not an eigenvalue of T), then the error

*vector em associated with the iterates xm of (2), i.e., c,, := x - x,, satisfies

(7) Em = Ten-, = ... = T o (m > 0).

Analogously, if 1, := x - yin, then 1,n satisfies

(8) =

We now assume that the set of eigenvalues of T (denoted by oa(T)) is contained in a
compact set (0 (where 1 fl). The assumption of such a set 0I is typical in applications of
iterative methods applied to matrix equations arising from physical problems. Then, given
f0, choose any infinite matr;x P of (4), (which then defines the serniiterative method of (3)).
Then, the asymptotic convergence factor, with respect to P, is defined by

(9) K(fQ,P) := lim max Ipm(z)}~~M-0o I zEOl

and we set
(10) K(fl) := inf {K(f, P): P induces a SIM of the form (3)).

Then, K(Q) is called the convergence factor for Q, and any P for which

(11) K(f/) = K(Q, P)

" ".'2 " ''0 ' ,r "' P 
'

"PJ.P#."? •" " • ",- "# . , 'd ,"' ",,-" ... * , ". ."- ," . *"/ €, ,



is called an asymptotically optimal SIA (an AOSIM) with rysp~ct to fI. 'he whole object 1-
to determine AOSIM's for a given compact set l (containing the eigenvalues of '). for slits
SIM's give the fastest asymptotic convergence rates, and these are thus preferred for ac't ual
computation!

To describe our main results, let C := CU{x} denote the extended plane, and let
(12) IM f{Q C :I Q is compact; 1 E ('\Q; (C\ is simply

connected, and Ql contains more than one point .

Then, by the Riemann Mapping Theorem, there is, for each Q E LNI, a conformal inapping

{3%: C\ {w: Il < 1) - C\Q, and{13 '(cc) = c: V'(c0) -=: y(Q) > 0.

Now, there is a unique ; with %P(w) = 1, and if I) :[ > 1, then this number il is the key
to finding an AOSIM with respect to fQ e IMe.

More precisely, we have (cf. [5, Corollary [2]) the

Theorem. Given Q E IN, then any SIM generated by a P satisfying (5) is an AOSI. ! wl1,
respect to 0I iff

(14) K(,P) =

Thus, for any Q E IN, an AOSIM always exists for Q1, and such a SIM can he obtaine(d
from the conformal mapping of (13). What is very interesting, in our opinion, is that there
is a strong connection with the theory of Faber polynomials and the construction of nearly
optimal semiiterative methods, for each Q E IM. To be precise, let us normalize to 1 (0)
in (13), so that

00

(15) (L(.) =W+ Z ( -k (w > 1).
k=O

If O(z) denotes the inverse mapping of 1(w), then we can write the Laurent expansion of
(O(Z))" as

n-1 n-2

(16) (/(z)) = oZ" + F3,kZ + E 3,kZ'.
k=O k=-oo

The principal part (or polynomial part) of (O(z))r is defined to be the Fabcr polynomal of
degree n for the set Q. It turns out that, on assuming some additional smoothness on the
boundary 801 of Ql, these Faber polynomials can be used to generate a SIM for the region Q
which is asymptotically optimal (i.e., an AOSIM). This is given in Theorem 22 of [5].

In our opinion, these results from complex function theory form the foundation of a wide-
reaching theory of iterative methods.
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